
1P. Murat, EWK Meeting, 2004/04/15

2nd C++ Compiler for Run II Experiments ?

● CDF and D0 are using C++ as a primary programming language , depend on
C++ compilers

● FORTRAN -> C++ transition degraded performance of the code

● CPU resources available are a limiting factor

● Performance of the code determines computing model

● both experiments would benefit from improving performance of the
software

● Using single compiler: moved/moving from KAI (bought by Intel) to GCC

– pros: less support effort

– cons: single point of failure, CDF Computing Review'2004 pointed to it

2P. Murat, EWK Meeting, 2004/04/15

2nd C++ Compiler for Run II Experiments ?

● CDF runs offline Production built in optimized mode

● Ratio “opt/non-opt” for GCC andd KCC is very different (CDF):

– GCC: “O3” improves speed by ~ x2 compared to non-opt

– KCC : with O2 gain is ~ 30%
● Generation of MC datasets in 2004 took 3-4 months => with GCC forced to

run optimized MC code as well

– Monte Carlo code was failing in optimized mode with GCC 3.1, primary
suspect – FORTRAN compiler bug (GEANT3!)

● CDF was forced to try the latest version of GCC (3.4)

– First results encouraging, validation in progress
● Still GCC is a single point of failure – what about other compilers?

3P. Murat, EWK Meeting, 2004/04/15

INTEL compilers

● C++ Working Group: Intel C++/FORTRAN is the first choice

● Intel C++ on Intel CPU's improves speed by ~50% compared to GCC

● What if it is 20-30% for AMD processors?

– 20-30% reduction in the number of CPU's needed

– or 20-30% decrease in the processing time
● INTEL doesn't have debugger, claim to be compatible with GGB

● INTEL has performance analyser !
● Tested in the field: ROOT development team uses INTEL compiler

● evaluation of the INTEL C++ seems to be the right step

● CDF would be willing to port its software to INTEL compiler and do the
evaluation

– relatively small task: Rob Kennedy did INTEL port once

